Autocrine Transforming Growth Factor-β Growth Pathway in Murine Osteosarcoma Cell Lines Associated with Inability to Affect Phosphorylation of Retinoblastoma Protein

نویسندگان

  • Fariba Navid
  • John J. Letterio
  • Choh L. Yeung
  • Michiel Pegtel
  • Lee J. Helman
چکیده

Purpose. Production of active transforming growth factor-beta (TGF-beta ) by human osteosarcoma may contribute to malignant progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimulation of tumor cell growth.To study events associated with induction of cell proliferation by TGF-beta , we have evaluated the TGF-beta pathway in two murine osteosarcoma cell lines, K7 and K12.Results. Northern and immunohistochemical analyses show that each cell line expressesTGF-beta1 and TGF-beta3 mRNA and protein. Both cell lines secrete activeTGF-beta 1 and display a 30-50% reduction in growth when cultured in the presence of a TGF-beta blocking antibody. Expression of TGF-beta receptors TbetaRI, TbetaRII and TbetaRIII is demonstrated by affinity labeling with (125) -TGF-beta 1, and the intermediates, Smads 2, 3 and 4, are uniformly expressed. Smads 2 and 3 are phosphorylated in response toTGF-beta , while pRb phosphorylation in each osteosarcoma cell line is not affected by either exogenousTGF-beta or TGF-beta antibody.Conclusions. The data implicate events downstream of Smad activation, including impaired regulation of pRb, in the lack of a growth inhibitory response toTGF-beta , and indicate that this murine model of osteosarcoma is valid for investigating the roles of autocrineTGF-beta in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β

Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

TGF-β Signaling Is Often Attenuated during Hepatotumorigenesis, but Is Retained for the Malignancy of Hepatocellular Carcinoma Cells

The role of transforming growth factor-beta (TGF-β) signaling in hepatocarcinogenesis remains controversial. We aimed to reveal TGF-β signaling status in human and murine tissues of hepatocellular carcinoma (HCC) and the mechanisms that mediate TGF-β's role in regulating HCC malignancy. Here, TGF-β pathway component expression and activation in human and murine HCC tissues were measured with qu...

متن کامل

Assay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model

Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sarcoma

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2000